Polynomial identities of algebras with actions of pointed Hopf algebras
نویسندگان
چکیده
منابع مشابه
Actions of Pointed Hopf Algebras
Definition 1.2 The invariants of H in A is the set A of those a ∈ A, that ha = ε(h)a for each h ∈ H. Straightforvard computations shows, that A is the subalgebra of A. We refer reader to [5], [6] for the basic information concerning Hopf algebras and their actions on associative algebras. As a generalization of the well-known fact for group actions the following question raised in [5] ( Questio...
متن کاملDuals of Pointed Hopf Algebras
In this paper, we study the duals of some finite dimensional pointed Hopf algebras working over an algebraically closed field k of characteristic 0. In particular, we study pointed Hopf algebras with coradical k[Γ] for Γ a finite abelian group, and with associated graded Hopf algebra of the form B(V )#k[Γ] where B(V ) is the Nichols algebra of V = ⊕iV χi gi ∈ k[Γ] k[Γ]YD. As a corollary to a ge...
متن کاملGeneralized Path Algebras and Pointed Hopf Algebras
Most of pointed Hopf algebras of dimension p with large coradical are shown to be generalized path algebras. By the theory of generalized path algebras it is obtained that the representations, homological dimensions and radicals of these Hopf algebras. The relations between the radicals of path algebras and connectivity of directed graphs are given. 2000 Mathematics subject Classification: 16w3...
متن کاملPointed Hopf Algebras with Abelian Coradical
In a previous work [AS2] we showed how to attach to a pointed Hopf algebra A with coradical kΓ, a braided strictly graded Hopf algebra R in the category Γ Γ YD of Yetter-Drinfeld modules over Γ. In this paper, we consider a further invariant of A, namely the subalgebra R of R generated by the space V of primitive elements. Algebras of this kind are known since the pioneering work of Nichols. It...
متن کاملActions of Hopf algebras ∗
An action of a finite dimensional Hopf algebra H on a noncommutative associative algebra A is considered. Properties of A , the subalgebra of invariants in A, are studied. It is proved that if A is integral over Z(A), the centre of an algebra A, then A is integral over Z(A) H , the subalgebra of invariants in Z(A), for each of three cases: 1. the coradical H0 is cocommutative and char k = p > 0...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 2004
ISSN: 0021-8693
DOI: 10.1016/j.jalgebra.2004.03.010